当前位置: 中文主页 >> 团队动态 >> 近期成果
近期成果

王光永等题为Nickel supported on iron-bearing olivine for CO2 methanation的文章被International Journal of Hydrogen Energy 接收发表

发表时间:2016-06-29
点击次数:

Nickel supported on iron-bearing olivine for CO2 methanation

Guangyong Wang, Shaoping Xu, Libing Jiang, Chao Wang

AbstractCalcined olivine supported nickel catalysts (Ni/olivine) were prepared by incipient wetness method and used for CO2 methanation. To investigate the structure-activity relationships of the catalysts, the structure of the olivine during calcination and that of the Ni/olivine after calcination and reduction were illustrated by means of powder X-ray diffraction, temperature programmed reduction, Mőssbauer spectroscopy and BET surface area measurement, and the CO2 methanation were evaluated by using Ni/olivine with different calcination temperatures of the olivine, Ni loadings, calcination and reduction temperatures of the catalyst. It was found that the FeOx phase formed on the surface of the calcined olivine was extracted from the olivine during its calcination, laying the base for the interaction between the surface FeOx and the NiO supported. The Ni–Fe alloy as the effective active component was formed on the calcined olivine containing mainly (MgxFe1−x)2 SiO4 and the thermal induced FeOx phase, from the reduced NiO and the partially reduced FeOx during the reduction of the Ni/olivine. The unreduced FeOxbetween the active phase Ni–Fe alloy and the olivine body, as the very support of the Ni–Fe alloy, plays an important role in CO2 methanation. With 6 wt.% Ni/olivine prepared under optimized condition as catalyst, at temperature of 400 °C and a H2/CO2 mole ratio of 6.0 and an hourly space velocity of 11,000 h−1, the CO2 methanation achieved 98% CO2 conversion with 99% selectivity to CH4. The Ni/olivine with strong resistance to coke deposition and abrasion could be a promising methanation catalyst, especially for fluidized bed operation.

KeywordsMethanation; Bimetallic catalyst; Ni–Fe alloy; Olivine



辽ICP备05001357号  地址:中国·辽宁省大连市甘井子区凌工路2号 邮编:116024 版权所有:大连理工大学


访问量:    最后更新时间:..