Indexed by:
期刊论文
First Author:
Wu, Wenhua
Correspondence Author:
Wu, WH (reprint author), Dalian Univ Technol, State Key Lab Struct Anal Ind Equipment, Dalian 116024, Peoples R China.
Co-author:
Feng, Jiaguo,Xie, Bin,Tang, Da,Yue, Qianjin,Xie, Ribin
Date of Publication:
2016-11-01
Journal:
SENSORS
Included Journals:
SCIE、EI、PubMed、Scopus
Document Type:
J
Volume:
16
Issue:
11
ISSN No.:
1424-8220
Key Words:
standalone; water depth-inclination sensor; multi-component mooring
system; self-contained technique; offshore platform
Abstract:
Prototype monitoring techniques play an important role in the safety guarantee of mooring systems in marine engineering. In general, the complexities of harsh ocean environmental conditions bring difficulties to the traditional monitoring methods of application, implementation and maintenance. Large amounts of existing mooring systems still lack valid monitoring strategies. In this paper, an underwater monitoring method which may be used to achieve the mechanical responses of a multi-point catenary mooring system, is present. A novel self-contained assembled water depth-inclination (D-I) sensor is designed and manufactured. Several advanced technologies, such as standalone, low power consumption and synchronism, are considered to satisfy the long-term implementation requirements with low cost during the design process. The design scheme of the water resistance barrel and installation clamp, which satisfies the diver installation, are also provided in the paper. An on-site test has previously been carried out on a production semisubmersible platform in the South China Sea. The prototype data analyses, including the D-I value in the time domain (including the data recorded during the mooring retraction and release process) and spectral characteristics, are presented to reveal the accuracy, feasibility and stability of the sensor in terms of fitting for the prototype monitoring of catenary mooring systems, especially for in-service aging platforms.
Translation or Not:
no