当前位置: 中文主页 >> 研究成果 >> 论文成果
论文成果

Multishelled NiO Hollow Microspheres for High-performance Supercapacitors with Ultrahigh Energy Density and Robust Cycle Life

发表时间:2019-03-13
点击次数:
论文类型:
期刊论文
第一作者:
Qi, Xinhong
通讯作者:
Li, XC (reprint author), Dalian Univ Technol, Dept Chem Engn, State Key Lab Fine Chem, Linggong Rd 2, Dalian 116024, Peoples R China.
合写作者:
Zheng, Wenji,Li, Xiangcun,He, Gaohong
发表时间:
2016-09-12
发表刊物:
SCIENTIFIC REPORTS
收录刊物:
SCIE、PubMed、Scopus
文献类型:
J
卷号:
6
页面范围:
33241
ISSN号:
2045-2322
摘要:
Multishelled NiO hollow microspheres for high-performance supercapacitors have been prepared and the formation mechanism has been investigated. By using resin microspheres to absorb Ni2+ and subsequent proper calcinations, the shell numbers, shell spacing and exterior shell structure were facilely controlled via varying synthetic parameters. Particularly, the exterior shell structure that accurately associated with the ion transfer is finely controlled by forming a single shell or closed exterior double-shells. Among multishelled NiO hollow microspheres, the triple-shelled NiO with an outer single-shelled microspheres show a remarkable capacity of 1280 F g(-1) at 1 A g(-1), and still keep a high value of 704 F g(-1) even at 20 A g(-1). The outstanding performances are attributed to its fast ion/electron transfer, high specific surface area and large shell space. The specific capacitance gradually increases to 108% of its initial value after 2500 cycles, demonstrating its high stability. Importantly, the 3S-NiO-HMS//RGO@Fe3O4 asymmetric supercapacitor shows an ultrahigh energy density of 51.0 Wh kg(-1) at a power density of 800 W kg(-1), and 78.8% capacitance retention after 10,000 cycles. Furthermore, multishelled NiO can be transferred into multishelled Ni microspheres with high-efficient H-2 generation rate of 598.5 mL H-2 min(-1) g(-1) Ni for catalytic hydrolysis of NH3BH3 (AB).
是否译文:

辽ICP备05001357号  地址:中国·辽宁省大连市甘井子区凌工路2号 邮编:116024 版权所有:大连理工大学


访问量:    最后更新时间:..