当前位置: 中文主页 >> 研究成果 >> 论文成果
论文成果

Rapidly Constructing Multiple AuPt Nanoalloy Yolk@Shell Hollow Particles in Ordered Mesoporous Silica Microspheres for Highly Efficient Catalysis

发表时间:2019-03-13
点击次数:
论文类型:
期刊论文
第一作者:
Li, Xiangcun
通讯作者:
He, GH (reprint author), Dalian Univ Technol, Dept Chem Engn, State Key Lab Fine Chem, Linggong Rd 2, Dalian 116024, Peoples R China.
合写作者:
Zheng, Wenji,Chen, Bo,Wang, Le,He, Gaohong
发表时间:
2016-05-01
发表刊物:
ACS SUSTAINABLE CHEMISTRY & ENGINEERING
收录刊物:
SCIE、EI
文献类型:
J
卷号:
4
期号:
5
页面范围:
2780-2788
ISSN号:
2168-0485
关键字:
AuPt nanoalloy; Yolk@shell; Catalytic activity; Aerosol process; Hollow structure
摘要:
In this work, for the first time, AuPt alloy yolk@shell hollow nanoparticles (NPs) were constructed and simultaneously embedded into hollow interiors of a mesoporous silica microsphere based on a rapid aerosol process (AuPt@SiO2). Resin nanospheres were utilized both as a hard template to create hollow interiors inside the mesoporous silica microspheres and as carriers to transport pregrown metal nanocrystals, AuPt alloy dusters, into the microspheres. Calcination removes the resin nanospheres and causes metal nanocrystals to embed into the hollow interiors of the silica microspheres. Due to the unique yolk@shell hollow structure of the AuPt nanoalloy, ordered mesopores (67 nm) in the silica support, the synergetic effect between the AuPt alloy and the high surface area and pore volume of the microspheres, the AuPt@SiO2 spheres showed an excellent catalytic performance for styrene epoxidation with the conversion and selectivity of 85% and 87%, respectively. Notably, the novel catalyst showed a stable catalytic performance after five cycles of usage, suggesting the possible practical applications of the AuPt nanoalloy catalyst. In addition, the catalyst also exhibited a higher activity than the commercial Pt/C catalyst for the reduction reaction of 4-nitrophenol. The approach reported in this study could potentially be used to simplify the fabrication process of yolk@shell or hollow metal nanospheres, facilitating encapsulation of monometallic and multimetallic metal nanocrystals with various nanostructures and compositions into porous supports and thus guiding the design of catalysts with a special structure and high-performance.
是否译文:

辽ICP备05001357号  地址:中国·辽宁省大连市甘井子区凌工路2号 邮编:116024 版权所有:大连理工大学


访问量:    最后更新时间:..