当前位置: 中文主页 >> 研究成果 >> 论文成果
论文成果

A photo-induced electron transfer study of an organic dye anchored on the surfaces of TiO2 nanotubes and nanoparticles

发表时间:2020-12-29
点击次数:
论文类型:
期刊论文
第一作者:
Ziolek, Marcin
通讯作者:
Tacchini, Ignacio,Martinez, M. Teresa,杨希川,Sun, Licheng,Douhal, Abderrazzak
发表时间:
2011-01-01
发表刊物:
PHYSICAL CHEMISTRY CHEMICAL PHYSICS
文献类型:
J
卷号:
13
期号:
9
页面范围:
4032-4044
ISSN号:
1463-9076
摘要:
We report on femtosecond-nanosecond (fs-ns) studies of the triphenylamine organic dye (TPC1) interacting with titania nanoparticles of different sizes, nanotubes and nanorods. We used time-resolved emission and absorption spectroscopy to measure the photoinduced dynamics of forward and back electron transfer processes taking place in TPC1-titania complexes in acetonitrile (ACN) and dichloromethane (DCM) solutions. We observed that the electron injection from the dye to titania occurs in a multi-exponential way with the main contribution of 100 fs from the hot excited charge-transfer state of anchored TPC1. This process competes with the relaxation of the excited state, mainly governed by solvation, that takes place with average time constants of 400 fs in ACN and 1.3 ps in DCM solutions. A minor contribution to the electron injection process takes place with longer time constants of about 1-10 ps from the relaxed excited state of TPC1. The latter times and their contribution do not depend on the size of the nanoparticles, but are substantially smaller in the case of nanotubes (1-3 ps), probably due to the caging effect. The contribution is also smaller in DCM than in ACN. The efficient back recombination takes place also in a multi-exponential way with times of 1 ps, 15 ps and 1 ns, and only 20-30% of the initial injected electrons in the conduction band are left within the first 1 ns after excitation. The faster recombination rates are suggested due to those originating from the free electrons in the conduction band of titania or the electrons in the shallow trap states, while the slower recombination is due to the electrons in the deep trap states. The results reported here should be relevant to a better understanding of the photobehaviour of an organic dye with promising potential for use in solar cells. They should also help to determine the important factors that limit the efficiency of solar cells based on the triphenylamine-based dyes for solar energy conversion.
是否译文:

辽ICP备05001357号  地址:中国·辽宁省大连市甘井子区凌工路2号 邮编:116024 版权所有:大连理工大学


访问量:    最后更新时间:..

大连理工大学西部校区精细化工国家重点实验室E310:Tel: +86-0411-84986250
Email:duanln@dlut.edu.cn