当前位置: 中文主页 >> 研究成果 >> 论文成果
论文成果

Mechanistic Investigation into the Effect of Sulfuration on the FeW Catalysts for the Selective Catalytic Reduction of NOx with NH3

发表时间:2019-03-12
点击次数:
论文类型:
期刊论文
第一作者:
Wang, Hui
通讯作者:
Qu, ZP (reprint author), Dalian Univ Technol, Sch Environm Sci & Technol, Key Lab Ind Ecol & Environm Engn MOE, Linggong Rd 2, Dalian 116024, Peoples R China.
合写作者:
Qu, Zhenping,Dong, Shicheng,Tang, Chen
发表时间:
2017-03-01
发表刊物:
ACS APPLIED MATERIALS & INTERFACES
收录刊物:
SCIE、EI、PubMed、Scopus
文献类型:
J
卷号:
9
期号:
8
页面范围:
7017-7028
ISSN号:
1944-8244
关键字:
sulfuration; sulfate species; mechanism; SCR; iron-tungsten oxides
摘要:
Iron tungsten (FeW) catalyst is a potential candidate for the selective catalytic reduction (SCR) of NOx with ammonia because of its excellent performance in a wide operating window. Sulfur poisoning effects in SCR catalysts have long been recognized as a challenge in development of efficient catalysts for applications. In this paper, the impact of sulfuration on catalyst structure, NH3-SCR reaction performance and mechanism was systematically investigated through spectroscopic and temperature-programmed approaches. The sulfuration inhibited the SCR activity at low temperatures (<300 degrees C), while no evident effect was observed at high temperatures (>= 300 degrees C). After sulfuration for FeW oxides catalyst, the organic-like with covalent S=0 bonds sulfate species were mainly formed over the FeW catalysts. Combining TPD with in situ DRIFTS results, it was found that the Lewis and the Bronsted acidity were enhanced by the interaction between metal species and sulfate species due to the strong electron withdrawing effect of the S=0 double bonds. The in situ DRIFTS study showed that the formation of NO2 was hindered, leading to the "fast-SCR" pathway was partly cut off by the sulfuration process and thereby the loss of SCR activity at low temperatures. However, the Langmuir-Hinshelwood reaction pathway between adsorbed NH3/NH4+ species and nitrate species was facilitated and dominated at high temperatures, making the as-synthesized FeW catalysts resistant to SO2 poisoning.
是否译文:

辽ICP备05001357号  地址:中国·辽宁省大连市甘井子区凌工路2号 邮编:116024 版权所有:大连理工大学


访问量:    最后更新时间:..