当前位置: 中文主页 >> 研究成果 >> 论文成果
论文成果

Selective catalytic oxidation of ammonia to nitrogen over CuO-CeO2 mixed oxides prepared by surfactant-templated method

发表时间:2019-03-09
点击次数:
论文类型:
期刊论文
第一作者:
Wang, Zhong
通讯作者:
Qu, ZP (reprint author), Dalian Univ Technol, Key Lab Ind Ecol & Environm Engn MOE, Sch Environm Sci & Technol, Linggong Rd 2, Dalian 116024, Peoples R China.
合写作者:
Qu, Zhenping,Quan, Xie,Li, Zhuo,Wang, Hui,Fan, Rui
发表时间:
2013-05-02
发表刊物:
APPLIED CATALYSIS B-ENVIRONMENTAL
收录刊物:
SCIE、EI
文献类型:
J
卷号:
134
页面范围:
153-166
ISSN号:
0926-3373
关键字:
Selective catalytic oxidation of ammonia; CuO-CeO2 mixed oxides; NH3 activation; Oxygen migration; Active species
摘要:
The selective catalytic oxidation of ammonia to nitrogen (NH3-SCO) has been studied over CuO-CeO2 mixed oxides. The active Cu component was doped into the CeO2 by surfactant-templated method. The finely dispersed CuO, Cu-O-Ce solid solution and bulk CuO species were detected in CuO-CeO2 mixed oxides. When the Cu loading was 10 wt% and the calcination temperature was 500 degrees C, CuO-CeO2 catalyst exhibited the highest molar ratio of the finely dispersed CuO species and the smallest CeO2 particles in size, and simultaneously possessed the highest level of activity. The finely dispersed CuO species was the main adsorbed sites of NH3 molecules, and the NH3(ad) could be further activated and transformed into NHx species by ceria under the roles of quick change of chemical state in near-surface region and the strong electron state interaction in CuO-CeO2 catalysts. The synergetic interaction between the two components played an important role in NH3 activation and oxidation. In addition, the activated intermediates (NHx) could also react with lattice oxygen provided by Cu-O-Ce solid solution to form N-2, N2O and H2O, which was confirmed by XPS, EPR and NH3-TPR analysis. Moreover, gas oxygen could refill the oxygen vacancies to replenish the lattice oxygen consumed by NHx species. The Cu-O-Ce solid solution promoted the activation of gas oxygen as well as the formation and migration of lattice oxygen in NH3-SCO reaction, and the formed rapid reduction-oxidation cycle was essential for the higher activity of NH3 oxidation. (C) 2013 Elsevier B.V. All rights reserved.
是否译文:

辽ICP备05001357号  地址:中国·辽宁省大连市甘井子区凌工路2号 邮编:116024 版权所有:大连理工大学


访问量:    最后更新时间:..