当前位置: 中文主页 >> 研究成果 >> 论文成果
论文成果

Numerical Analysis of Thermoacoustic Characteristics of Components Inside a Complex Aircraft Related to the Coupling Effect of High Temperature and Random Vibration

发表时间:2019-03-09
点击次数:
论文类型:
期刊论文
第一作者:
Bai, Yu-guang
通讯作者:
Xia, GQ (reprint author), Dalian Univ Technol, Fac Vehicle Engn & Mech, State Key Lab Struct Anal Ind Equipment, Dalian 116023, Peoples R China.
合写作者:
Zhao, Yan,Xia, Guang-qing,Zhang, You-wei,Kennedy, David,Williams, Fred
发表时间:
2015-01-01
发表刊物:
JOURNAL OF LOW FREQUENCY NOISE VIBRATION AND ACTIVE CONTROL
收录刊物:
SCIE
文献类型:
J
卷号:
34
期号:
2,SI
页面范围:
119-135
ISSN号:
0263-0923
摘要:
Hypersonic aircraft always face bad flight environment related to the coupling effects of high temperature and random vibration. Numerical analysis of thermoacoustic characteristics of components inside such an aircraft is presented in this paper. An actual aircraft cabin composite structure including a heat resistant layer, an adiabatic layer and metal frameworks is modeled with the finite element mesh generation method. Transient heat conduction of the hypersonic flight aircraft is analyzed based on a block-iterative coupling method which can consider the atmosphere-aircraft interaction. Then the Von Karman turbulence spectrum is employed to define the random vibration environment of the present aircraft. The thermodynamic response of the system is solved by the pseudo-excitation method which can improve the computation efficiency greatly. Finally, thermoacoustic characteristic of the cavity inside the aircraft cabin is analyzed when the transient heat conduction and random vibration due to atmosphere turbulence are both included. A numerical method is proposed based on a structure-acoustic coupling method which can use acoustic equations to simulate the propagation of the acoustic wave in the flow. It can be found from the computed results that the change of the temperature influences both the thermodynamic characteristic of the aircraft cabin and thermoacoustic characteristic of the component inside the present aircraft significantly. So the coupling effects of high temperature and random vibration on thermoacoustic characteristic of a hypersonic flight aircraft cannot be neglected. The proposed numerical analysis method in this paper can be widely applied to numerical investigations of thermoacoustic systems inside hypersonic aircraft.
是否译文:

辽ICP备05001357号  地址:中国·辽宁省大连市甘井子区凌工路2号 邮编:116024 版权所有:大连理工大学


访问量:    最后更新时间:..