NAV
中文 DALIAN UNIVERSITY OF TECHNOLOGYLogin
Membrane
Paper
Current position: Home >> Research Results >> Paper
Ni and Co doped yolk-shell type Fe2O3 hollow microspheres as anode materials for lithium-ion batteries
Release time:2019-03-12 Hits:
Indexed by: 期刊论文
First Author: Qi, Xinhong
Co-author: Yan, Zhijun,Liu, Yang,Li, Xiangcun,He, Gaohong,Komarneni, Sridhar
Date of Publication: 2018-06-01
Journal: MATERIALS CHEMISTRY AND PHYSICS
Included Journals: SCIE
Document Type: J
Volume: 211
Page Number: 452-461
ISSN No.: 0254-0584
Key Words: Yolk-shell hollow microspheres; Ni and Co doped Fe2O3; Controlled morphologies and compositions; Lithium-ion batteries
Abstract: Ni and Co doped Fe2O3 hollow microspheres of yolk-shell type were designed and synthesized by using resin (RF-COOH) microspheres as hard template and subsequent calcination. Specific morphologies (walnut-like, jingle-bell-like and ball-like) and compositions of Fe2O3 with different amounts of Ni and Co doping were obtained by tuning metal precursor concentration to optimize their performance in lithium-ion battery application. When Ni and Co doped Fe2O3 hollow microspheres were used as anode materials for lithium-ion batteries, jingle-bell-like and ball-like morphologies showed better electrochemical performance with specific capacities of 415.7 and 414.1 mA h/g, respectively up to 200 cycles due to their stable construction with hollow cavity, porous shell and Ni and Co dopants. However, the specific capacity of Ni and Co doped Fe2O3@TiO2 hollow microspheres increased to 562 mA h/g. This work showed a new avenue for designing and fabricating yolk-shell hollow structures with specific morphologies and compositions in order to optimize their specific capacity for use in lithium-ion batteries. (C) 2018 Elsevier B.V. All rights reserved.
Translation or Not: no